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1 Introduction

Technical analysis represents a methodology of forecasting the future price movements through

the study of past price data and uncovering some recurrent regularities, or patterns, in price

dynamics. One of the fundamental principles of technical analysis is that prices move in

trends. Analysts firmly believe that these trends can be identified in a timely manner to

generate profits and limit losses. Market timing is an active trading strategy that implements

this idea in practice. Specifically, this strategy is based on switching between the market and

the cash depending on whether the prices trend upward or downward. A moving average is

one of the oldest and most popular tools used in technical analysis for detecting a trend.

The great controversy about technical analysis is over whether it is scientific or non-

scientific. One the one hand, technical analysis has been extensively used by traders for over

a century and the majority of active traders strongly believe in market timing. On the other

hand, academics had long been skeptical about the usefulness of technical analysis. Yet the

academics’ attitude towards the technical analysis is gradually changing. The findings in the

papers on technical analysis of financial markets, published in prominent academic journals

(examples are Brock, Lakonishok, and LeBaron (1992), Sullivan, Timmermann, and White

(1999), Lo, Mamaysky, and Wang (2000), Okunev and White (2003), and Moskowitz, Ooi, and

Pedersen (2012)), suggest that one should not dismiss the value of technical analysis. Recently

we have witnessed a constantly increasing interest in technical analysis from both the practi-

tioners and academics alike (see Park and Irwin (2007)). This interest developed because over

the course of the last 15 years, especially over the decade of 2000s, many technical trading

rules outperformed the market by a large margin.

However, despite a series of publications in academic journals, modern technical analysis is

still largely based on superstitions and beliefs. Consequently, modern technical analysis remains

art rather than science. The situation with market timing is as follows. There have been

proposed many technical trading rules based on moving averages of prices calculated on a fixed

size data window (called the “lookback” period). The main examples are: the momentum rule,

the price-minus-moving-average rule, the change-of-direction rule, and the double-crossover

method. In addition, there are several popular types of moving averages: simple (or equally-

weighted) moving average, linearly-weighted moving average, exponentially-weighed moving
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average, etc. As a result, there exists a large number of potential combinations of trading rules

with moving average weighting schemes. One of the controversies about market timing is over

which trading rule in combination with which weighing scheme produces the best performance.

The situation is further complicated because in order to compute a moving average one must

define the length of the lookback period. Again, there is a big controversy about the length of

the optimal lookback period. Nevertheless, one can easily note that technical traders do share

a few common beliefs and myths. They are as follows. First, one can easily beat the market

using some technical trading rules. Second, in the computation of a moving average one has

to overweight the most recent prices because they contain more relevant information on the

future direction of the price than earlier prices. Finally, in each trading rule there exits some

specific, time-invariant, length of the lookback period that produces the best performance.

There is a simple explanation for the existing situation with market timing. First of all,

technical traders do not really understand the response characteristics of the trading indicators

they use. The selection of a trading rule is made based mainly on intuition rather than any

deeper analysis of commonalities and differences between miscellaneous choices for trading rules

and moving average weighting schemes. Second, there is usually no objective scientific evidence

which supports the claim that some specific trading rule, coupled with some specific choices for

the moving average weighting scheme and the length of the lookback period, produces the best

performance. Often such a claim is supported by colorful narratives and anecdotal evidence.

At best, such a claim is “supported” by finding the best performing combination in a back test

using an arbitrary chosen period of historical prices. Yet this approach to selecting the best

rule is commonly termed as “data-mining” (or “data-snooping”) and has nothing to do with

science (see Sullivan et al. (1999), White (2000), and Aronson (2006)).

In this paper, we contribute to the literature in two important ways. The first contribution

is to demonstrate the anatomy of market timing rules with moving averages. Specifically, we

begin the paper by presenting a methodology for examining how the value of a trading indicator

is computed. Then using this methodology we study the computation of trading indicators in

many market timing rules and analyze the commonalities and differences between the rules. We

reveal that despite being computed seemingly different at the first sight, all technical trading

indicators considered in this paper are computed in the same general manner. In particular,

the computation of every technical trading indicator can be equivalently interpreted as the
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computation of the weighted moving average of price changes. The only real difference lies in

the weighting scheme used to compute the moving average of price changes.

Our methodology of analyzing the computation of trading indicators for the timing rules

based on moving averages offers a broad and clear perspective on the relationship between

different rules. We show, for example, that every trading rule can also be presented as a

weighted average of the momentum rules computed using different lookback periods. Thus,

the momentum rule might be considered as an elementary trading rule on the basis of which

one can construct more elaborate rules. In addition, we establish a one-to-one equivalence

between a price-minus-moving-average rule and a corresponding moving-average-change-of-

direction rule.

The second contribution of this paper is to perform an objective testing of the common

beliefs and myths about the performance of market timing rules. These myths and common

beliefs represent, in fact, meaningful claims that can be tested using historical data. Specifi-

cally, we perform out-of-sample testing of a few clearly distinct market timing rules based on

moving averages in order to find out the following: Is it possible to beat the market by timing

it? Does over- or under-weighting the recent prices allow one to improve the performance of

market timing? Is there a single optimal lookback period in each trading rule?

We assemble a dataset of monthly returns on the Standard and Poor’s Composite stock price

index, as well as the risk-free rate of return, over the period from January 1860 to December

2009. We perform the longest out-of-sample test1 of market timing rules over the period of 140

years, from January 1870 to December 2009. First and foremost, our results indicate that there

is no single optimal lookback period in each trading rule. That is, contrary to the common

belief, the length of the optimal lookback period is time-varying and depends probably on

market conditions. Motivated by this finding, we perform the out-of-sample simulation of the

returns to the market timing rules using not only the expanding-window estimation scheme to

determine the length of the optimal lookback period, but also the rolling-window estimation

scheme. This allows us to find out which estimation scheme produces the best performance of

a market timing strategy. It is worth noting that the former estimation scheme is used when

1To the best knowledge of the author, there are only two papers to date in which the researchers implement
an out-of-sample test of profitability for some trading rules in the stock market. Specifically, in the paper by
Sullivan et al. (1999) the length of the out-of-sample period amounts to 10 years only. In the paper by Zakamulin
(2014) the length of the out-of-sample period amounts to 80 years.
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the parameter of estimation is supposed to be constant, whereas the latter estimation scheme

is used when parameter instability is suspected.

The results of our out-of-sample testing suggest that the majority of market timing rules

show a better risk-adjusted performance than that of the market. For a few market timing

rules we find the evidence that the outperformance is statistically significant. There are in-

dications that the use of the rolling-window estimation scheme produces better out-of-sample

performance than the use of the expanding-window one. Contrary to the common belief, we

find that neither over-weighting nor under-weighting the recent price changes improves the

performance of a market timing strategy. Specifically, we find that the momentum rule, where

the price changes are equally weighted, produces the best performance in out-of-sample tests.

Despite the fact that over a very long horizon (which is beyond the investment horizon

of most individual investors) an active timing strategy tends to outperform the market, the

performance of an active strategy is highly uneven over time. Therefore, as argued by Zaka-

mulin (2014), the traditional performance measurement, which consists in reporting a single

number for performance, is very misleading for investors with medium-term horizons. To give

a broader and clearer picture of market timing performance, we provide a detailed descriptive

statistics of performance over 5- and 10-year horizons. Here the main new finding is that even

for the best performing timing rules the probability of outperforming the market is barely

above 50%. That is, there is absolutely no guarantee that a timing strategy beats the mar-

ket over a medium run. Roughly, over medium-term horizons, the market timing strategy is

equally likely to outperform as to underperform. Yet the average outperformance is greater

than the average underperformance.

The rest of the paper is organized as follows. In the subsequent Section 2 we first present

the moving averages and trading rules considered in the paper. Then we demonstrate the

anatomy of trading rules with different moving averages. In Section 3 we perform an objective

testing of the common beliefs and myths about the performance of market timing rules. We

begin this section with a detailed description of our data, the set of tested rules, and our

methodology. Then we perform the out-of-sample testing and present the results. Section 4

concludes the paper.
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2 Anatomy of Market Timing with Moving Averages

2.1 Moving Averages

A moving average of prices is calculated using a fixed size data “window” that is rolled through

time, each month adding the new price and taking off the oldest price. The length of this

window of data, also called the “lookback” period or averaging period, is the time interval

over which the moving average is computed. We follow the standard practice and use prices,

not adjusted for dividends, in the computation of moving averages and all technical trading

indicators. More formally, let (P1, P2, . . . , PT ) be the observations of the monthly closing prices

of a stock price index. A moving average at time t is computed using the last closing price Pt

and k lagged prices Pt−j , j ∈ [1, k]. It is worth noting that the time interval over which the

moving average is computed amounts to k months and includes k + 1 monthly observations.

Generally, each price observation in the rolling window of data has its own weight in the

computation of a moving average. More formally, a weighted Moving Average at month-end t

with k lagged prices (denoted by MAt(k)) is computed as

MAt(k) =
wtPt + wt−1Pt−1 + wt−2Pt−2 + . . .+ wt−kPt−k

wt + wt−1 + wt−2 + . . .+ wt−k
=

∑k
j=0wt−jPt−j∑k

j=0wt−j

,

where wt−j is the weight of price Pt−j in the computation of the weighted moving average.

It is worth observing that in order to compute a moving average one has to use at least one

lagged price, this means that one should have k ≥ 1. When the number of lagged prices is

zero, a moving average becomes the last closing price

MAt(0) = Pt.

The most commonly used type of moving average is the simple moving average. A Simple

Moving Average (SMA) at month-end t is computed as

SMAt(k) =
Pt + Pt−1 + Pt−2 + . . .+ Pt−k

k + 1
=

1

k + 1

k∑
j=0

Pt−j .

A simple moving average is, in fact, an equally-weighted moving average where an equal weight

is given to each price observation. Many analysts argue that the most recent stock prices
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contain more relevant information on the future direction of the stock price than earlier stock

prices. Therefore, one should put more weight on the more recent price observations. For

this purpose, analysts employ either the linearly weighted moving average or the exponentially

weighted moving average.

A Linear (or linearly weighted) Moving Average (LMA) at month-end t is computed as

LMAt(k) =
(k + 1)Pt + kPt−1 + (k − 1)Pt−2 . . .+ Pt−k

(k + 1) + k + (k − 1) + . . .+ 1
=

∑k
j=0(k − j + 1)Pt−j∑k

j=0(k − j + 1)
.

In the linearly weighted moving average the weights decrease in arithmetic progression. In

particular, in LMA(k) the latest observation has weight k + 1, the second latest k, etc. down

to one. A disadvantage of the linearly weighted moving average is that the weighting scheme is

too rigid. This problem can be addressed by using the exponentially weighted moving average

instead of the linearly weighted moving average. An Exponential Moving Average (EMA) at

month-end t is computed as

EMAt(k) =
Pt + λPt−1 + λ2Pt−2 + . . .+ λkPt−k

1 + λ+ λ2 + . . .+ λk
=

∑k
j=0 λ

jPt−j∑k
j=0 λ

j
,

where 0 < λ ≤ 1 is a decay factor. When λ < 1, the exponentially weighted moving average

assigns greater weights to the most recent prices. By varying the value of λ, one is able to

adjust the weighting to give greater or lesser weight to the most recent price. The properties

of the exponential moving average:

lim
λ→1

EMAt(k) = SMAt(k), lim
λ→0

EMAt(k) = Pt. (1)

Probably the least commonly used type of moving average is the Reverse Exponential

Moving Average (REMA) computed as

REMAt(k) =
λkPt + λk−1Pt−1 + λk−2Pt−2 + . . .+ Pt−k

λk + λk−1 + λk−2 + . . .+ 1
=

∑k
j=0 λ

k−jPt−j∑k
j=0 λ

k−j
.

Contrary to the regular exponential moving average that gives greater weights to the most

recent prices, the reverse exponential moving average assigns greater weights to the most

oldest prices and decreases the importance of the most recent prices. The use of the reverse
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exponential moving average can be justified if one assumes that earlier stock prices contain

more relevant information on the future direction of the stock price than the most recent stock

prices. The properties of the reverse exponential moving average:

lim
λ→1

REMAt(k) = SMAt(k), lim
λ→0

REMAt(k) = Pt−k. (2)

Instead of the regular moving averages of prices considered above, traders sometimes use

more elaborate moving averages that can be considered as “moving averages of moving aver-

ages”. Specifically, instead of using a regular moving average to smooth the price series, some

traders perform either double- or triple-smoothing of the price series. The main examples

of this type of moving averages are: Triangular Moving Average, Double Exponential Moving

Average, and Triple Exponential Moving Average (see, for example, Kirkpatrick and Dahlquist

(2010)). To shorten and streamline the presentation, we will not consider these moving aver-

ages in our paper. Yet our methodology can be applied to the analysis of the trading indicators

based on this type of moving averages in a straightforward manner.

2.2 Technical Trading Rules

Every market timing rule prescribes investing in the stocks (that is, the market) when a Buy

signal is generated and moving to cash when a Sell signal is generated. In the absence of

transaction costs, the time t return to a market timing strategy is given by

rt = δt|t−1rMt +
(
1− δt|t−1

)
rft, (3)

where rMt and rft are the month t returns on the stock market (including dividends) and the

risk-free asset respectively, and δt|t−1 ∈ {0, 1} is a trading signal for month t (0 means Sell and

1 means Buy) generated at the end of month t− 1.

In each market timing rule the generation of a trading signal is a two-step process. At the

first step, one computes the value of a technical trading indicator using the last closing price

and k lagged prices

Indicator
TR(k)
t = Eq(Pt, Pt−1, . . . , Pt−k),

where TR denotes the timing rule and Eq(·) is the equation that specifies how the technical
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trading indicator is computed. At the second step, using a specific function one translates the

value of the technical indicator into the trading signal. In all market timing rules considered

in this paper the Buy signal is generated when the value of a technical trading indicator is

positive. Otherwise, the Sell signal is generated. Thus, the generation of a trading signal can

be interpreted as an application of the following (mathematical) indicator function to the value

of the technical indicator

δt+1|t = 1+

(
Indicator

TR(k)
t

)
,

where the indicator function 1+(·) is defined by

1+(x) =


1 if x > 0,

0 if x ≤ 0.

We start with the Momentum rule which is the simplest and most basic market timing rule.

In the Momentum rule one compares the last closing price, Pt, with the closing price k months

ago, Pt−k. In this rule a Buy signal is generated when the last closing price is greater than the

closing price k months ago. Formally, the technical trading indicator for the Momentum rule

is computed as

Indicator
MOM(k)
t = MOMt(k) = Pt − Pt−k.

Then the trading signal is generated by

δ
MOM(k)
t+1|t = 1+ (MOMt(k)) .

Most often, in order to generate a trading signal, the analysts compare the last closing

price with the value of a k-month moving average. In this case a Buy signal is generated when

the last closing price is above a k-month moving average. Otherwise, if the last closing price

is below a k-month moving average, a Sell signal is generated. Formally, the technical trading

indicator for the Price-Minus-Moving-Average rule is computed as

Indicator
P-MA(k)
t = Pt −MAt(k).
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The trading signals for each considered type of moving average are generated by

δ
P-SMA(k)
t+1|t = 1+ (Pt − SMAt(k)) ,

δ
P-LMA(k)
t+1|t = 1+ (Pt − LMAt(k)) ,

δ
P-EMA(k)
t+1|t = 1+ (Pt − EMAt(k)) ,

δ
P-REMA(k)
t+1|t = 1+ (Pt −REMAt(k)) .

Some analysts argue that the price is noisy and the Price-Minus-Moving-Average rule

produces many false signals (whipsaws). They suggest to address this problem by employing

two moving averages in the generation of a trading signal: one shorter average with lookback

period s and one longer average with lookback period k > s. This technique is called the

Double Crossover Method (see, for example, Murphy (1999), Chapter 9). In this case the

technical trading indicator is computed as

Indicator
DCM(s,k)
t = MAt(s)−MAt(k).

It is worth noting the obvious relationship

Indicator
DCM(0,k)
t = Indicator

P-MA(k)
t .

Less often, in order to generate a trading signal, the analysts compare the most recent value

of a k-month moving average with the value of a k-month moving average in the preceding

month. Intuitively, when the stock prices are trending upward (downward) the moving average

is increasing (decreasing). Consequently, in this case a Buy signal is generated when the value

of a k-month moving average has increased over a month. Otherwise, a Sell signal is generated.

Formally, the technical trading indicator for the Moving-Average-Change-of-Direction rule is

computed as

Indicator
∆MA(k)
t = MAt(k)−MAt−1(k).
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The trading signals for each considered type of moving average are generated by

δ
∆SMA(k)
t+1|t = 1+ (SMAt(k)− SMAt−1(k)) ,

δ
∆LMA(k)
t+1|t = 1+ (LMAt(k)− LMAt−1(k)) ,

δ
∆EMA(k)
t+1|t = 1+ (EMAt(k)− EMAt−1(k)) ,

δ
∆REMA(k)
t+1|t = 1+ (REMAt(k)−REMAt−1(k)) .

2.3 Anatomy of Trading Rules

2.3.1 Preliminaries

It has been known for years that there is a relationship between the Momentum rule and the

Simple-Moving-Average-Change-of-Direction rule.2 In particular, note that

SMAt(k − 1)− SMAt−1(k − 1) =
Pt − Pt−k

k
=

MOMt(k)

k
.

Therefore

Indicator
∆SMA(k−1)
t ≡ Indicator

MOM(k)
t , (4)

where the symbol≡means equivalence. The equivalence of two technical indicators follows from

the following property: the multiplication of a technical indicator by any positive real number

produces an equivalent technical indicator. This is because the trading signal is generated

depending on the sign of the technical indicator. The formal presentation of this property:

1+ (a× Indicatort(k)) = 1+ (Indicatort(k)) , (5)

where a is any positive real number. Using relation (4) as an illustrating example, observe

that if SMAt(k − 1) > SMAt−1(k − 1) then MOMt(k) > 0 and vice versa. In other words,

the Simple-Moving-Average-Change-of-Direction rule, ∆SMA(k− 1), generates the Buy (Sell)

trading signal when the Momentum rule, MOMt(k), generates the Buy (Sell) trading signal.

What else can we say about the relationship between different market timing rules? The

ultimate goal of this section is to answer this question and demonstrate that all market timing

rules considered in this paper are closely interconnected. In particular, we are going to show

2See, for example, http://en.wikipedia.org/wiki/Momentum (technical analysis).

11



that the computation of a technical trading indicator for every market timing rule can be

interpreted as the computation of the weighted moving average of monthly price changes over

the lookback period. We will do it sequentially for each trading rule.

2.3.2 Momentum Rule

The computation of the technical trading indicator for the Momentum rule can be equivalently

represented by

Indicator
MOM(k)
t = MOMt(k) = Pt − Pt−k

= (Pt − Pt−1) + (Pt−1 − Pt−2) + ...+ (Pt−k+1 − Pt−k) =
k∑

i=1

∆Pt−i,
(6)

where ∆Pt−i = Pt−i+1 − Pt−i. Consequently, using property (5), the computation of the

technical indicator for the Momentum rule is equivalent to the computation of the equally

weighted moving average of the monthly price changes over the lookback period:

Indicator
MOM(k)
t ≡ 1

k

k∑
i=1

∆Pt−i. (7)

2.3.3 Price-Minus-Moving-Average Rule

First, we derive the relationship between the Price-Minus-Moving-Average rule and the Mo-

mentum rule:

Indicator
P-MA(k)
t = Pt −MAt(k) = Pt −

∑k
j=0wt−jPt−j∑k

j=0wt−j

=

∑k
j=0wt−jPt −

∑k
j=0wt−jPt−j∑k

j=0wt−j

=

∑k
j=1wt−j(Pt − Pt−j)∑k

j=0wt−j

=

∑k
j=1wt−jMOMt(j)∑k

j=0wt−j

.

(8)

Using property (5), the relation above can be conveniently re-written as

Indicator
P-MA(k)
t ≡

∑k
j=1wt−jMOMt(j)∑k

j=1wt−j

. (9)

Consequently, the computation of the technical indicator for the Price-Minus-Moving-Average

rule, Pt−MAt(k), is equivalent to the computation of the weighted moving average of technical
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indicators for the Momentum rules, MOMt(j), for j ∈ [1, k]. It is worth noting that the

weighting scheme for computing the moving average of the momentum technical indicators,

MOMt(j), is the same as the weighting scheme for computing the weighted moving average

MAt(k).

Second, we use identity (6) and rewrite the numerator in (9) as

k∑
j=1

wt−jMOMt(j) =
k∑

j=1

wt−j

j∑
i=1

∆Pt−i = wt−1∆Pt−1 + wt−2(∆Pt−1 +∆Pt−2) + . . .

+ wt−k(∆Pt−1 +∆Pt−2 + . . .+∆Pt−k) = (wt−1 + . . .+ wt−k)∆Pt−1

+ (wt−2 + . . .+ wt−k)∆Pt−2 + . . .+ wt−k∆Pt−k =

k∑
i=1

 k∑
j=i

wt−j

∆Pt−i.

(10)

The last expression tells us that the numerator in (9) is a weighted sum of the monthly

price changes over the lookback period, where the weight of ∆Pt−i equals
∑k

j=iwt−i. Thus,

another alternative expression for the computation of the technical indicator for the Price-

Minus-Moving-Average rule is given by

Indicator
P-MA(k)
t ≡

∑k
i=1

(∑k
j=iwt−j

)
∆Pt−i∑k

i=1

(∑k
j=iwt−j

) =

∑k
i=1 xi∆Pt−i∑k

i=1 xi
. (11)

where

xi =
k∑

j=i

wt−j (12)

is the weight of the price change ∆Pt−i. In words, the computation of the technical indicator

for the Price-Minus-Moving-Average rule is equivalent to the computation of the weighted

moving average of the monthly price changes over the lookback period.

It is important to note from equation (12) that the application of the Price-Minus-Moving-

Average rule usually leads to overweighting the most recent price changes as compared to the

original weighting scheme used to compute the moving average of prices. If the weighting

scheme in a trading rule is already designed to overweight the most recent prices, then as a

rule the trading signal is computed with a much stronger overweighting the most recent price

changes. This will be demonstrated below.

Let us now, on the basis of (11), present the alternative expressions for the computation
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of Price-Minus-Moving-Average technical indicators that use the specific weighting schemes

described in the beginning of this section. We start with the Simple Moving Average which

uses the equally weighted moving average of prices. In this case the weight of ∆Pt−i is given

by

xi =

k∑
j=i

wt−j =

k∑
j=i

1 = k − i+ 1.

Consequently, the equivalent representation for the computation of the technical indicator for

the Price-Minus-Simple-Moving-Average rule:

Indicator
P-SMA(k)
t ≡

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)
=

k∆Pt−1 + (k − 1)∆Pt−2 + . . .+∆Pt−k

k + (k − 1) + . . .+ 1
. (13)

This suggests that alternatively we can interpret the computation of the technical indicator

for the Price-Minus-Simple-Moving-Average rule as the computation of the linearly weighted

moving average of monthly price changes.

We next consider the Linear Moving Average which uses the linearly weighted moving

average or prices. In this case the weight of ∆Pt−i is given by

xi =
k∑

j=i

wt−j =
k∑

j=i

(k − j + 1) =
(k − i+ 1)(k − i+ 2)

2
,

which is the sum of the terms of arithmetic sequence from 1 to k − i + 1 with the common

difference of 1. As the result, the equivalent representation for the computation of the technical

indicator for the Price-Minus-Linear-Moving-Average rule

Indicator
P-LMA(k)
t ≡

∑k
i=1

(k−i+1)(k−i+2)
2 ∆Pt−i∑k

i=1
(k−i+1)(k−i+2)

2

. (14)

Then we consider the Exponential Moving Average which uses the exponentially weighted

moving average or prices. In this case the weight of ∆Pt−i is given by

xi =

k∑
j=i

wt−j =

k∑
j=i

λj =
λ

1− λ

(
λi−1 − λk

)
, (15)

which is the sum of the terms of geometric sequence from λi to λk. Consequently, the equivalent

presentation for the computation of the technical indicator for the Price-Minus-Exponential-
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Moving-Average rule

Indicator
P-EMA(k)
t ≡

∑k
i=1

(
λi−1 − λk

)
∆Pt−i∑k

i=1 (λ
i−1 − λk)

. (16)

If k is relatively large such that λk ≈ 0, then the expression for the computation of the technical

indicator for the Price-Minus-Exponential-Moving-Average rule becomes

Indicator
P-EMA(k)
t ≡

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
=

∆Pt−1 + λ∆Pt−2 + . . .+ λk−1∆Pt−k

1 + λ+ . . .+ λk−1
, when λk ≈ 0.

(17)

In words, the computation of the trading signal for the Price-Minus-Exponential-Moving-

Average rule, when k is rather large, is equivalent to the computation of the exponential

moving average of monthly price changes. It is worth noting that this is probably the only

trading rule where the weighing scheme for the computation of moving average of prices is

identical to the weighing scheme for the computation of moving average of price changes.

The weight of ∆Pt−i for the Reverse Exponential Moving Average is given by

xi =
k∑

j=i

wt−j =
k∑

j=i

λk−j =
1− λk−i+1

1− λ
,

which is the sum of the terms of geometric sequence from 1 to λk−i. Consequently, the

equivalent representation for the computation of the technical indicator for the Price-Minus-

Reverse-Exponential-Moving-Average rule

Indicator
P-REMA(k)
t ≡

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
. (18)

2.3.4 Moving-Average-Change-of-Direction Rule

The value of this technical trading indicator is based on the difference of two weighted moving

averages computed at times t and t−1 respectively. We assume that the length of the lookback

period is k − 1 months, the reason for this assumption will become clear very soon. The
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straightforward computation yields

Indicator
∆MA(k − 1)
t = MAt(k − 1)−MAt−1(k − 1) =

∑k−1
i=0 wt−iPt−i∑k−1

i=0 wt−i

−
∑k−1

i=0 wt−iPt−i−1∑k−1
i=0 wt−i

=

∑k−1
i=0 wt−i (Pt−i − Pt−i−1)∑k−1

i=0 wt−i

=

∑k
i=1wt−i+1∆Pt−i∑k

i=1wt−i+1

.

Similarly to the alternative representation for the computation of the technical indicator for

the Price-Minus-Moving-Average rule (given by (11)), the computation of the technical indi-

cator for the Moving-Average-Change-of-Direction rule is equivalent to the computation of the

weighted moving average of monthly price changes:

Indicator
∆MA(k − 1)
t ≡

∑k
i=1wt−i+1∆Pt−i∑k

i=1wt−i+1

. (19)

Note that the weighting scheme for the computation of the moving average of monthly price

changes is the same as for the computation of moving average of prices. From (19) we easily

recover the relationship for the case of the Simple Moving Average where wt−i+1 = 1 for all i

Indicator
∆SMA(k − 1)
t ≡

∑k
i=1∆Pt−i

k
≡ Indicator

MOM(k)
t .

In the case of the Linear Moving Average, where wt−i+1 = k − i + 1, we derive a new

relationship:

Indicator
∆LMA(k − 1)
t ≡

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)
≡ IndicatorP-SMA

t (k),

where the last equivalence comes from (13). Putting it into words, the Price-Minus-Simple-

Moving-Average rule prescribes investing in the stocks (moving to cash) when the Linear

Moving Average of prices over the lookback period of k − 1 months increases (decreases).

In the case of the Exponential Moving Average and Reverse Exponential Moving Average,

the resulting expressions for the Change-of-Direction rules can be written as

Indicator
∆EMA(k − 1)
t ≡

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
, Indicator

∆REMA(k − 1)
t ≡

∑k
i=1 λ

k−i∆Pt−i∑k
i=1 λ

k−i
.

Observe in particular that if k is rather large, then, using result (17) we obtain yet another
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new relationship:

Indicator
P-EMA(k)
t ≡ Indicator

∆EMA(k − 1)
t , when λk ≈ 0.

In words, when k is rather large, the Price-Minus-Exponential-Moving-Average rule is equiv-

alent to the Exponential-Moving-Average-Change-of-Direction rule. As it might be observed,

for the majority of weighting schemes considered in the paper, there is a one-to-one equivalence

between a Price-Minus-Moving-Average rule and a corresponding Moving-Average-Change-of-

Direction rule. Therefore, the majority of the moving-average-change-of-direction rules (and

may be all of them) can also be expressed as the moving average of Momentum rules.

Finally it is worth commenting that the traders had long ago taken notice of the fact that,

for example, very often a Buy signal is generated first by the Price-Minus-Moving-Average rule,

then with some delay a Buy signal is generated by the Moving-Average-Change-of-Direction

rule. Therefore the traders sometimes use the trading signal of the Moving-Average-Change-

of-Direction rule to “confirm” the signal of the Price-Minus-Moving-Average rule (again, see

Murphy (1999), Chapter 9). Our analysis provides a simple explanation for the existence of a

delay between the signals generated by these two rules. The delay naturally occurs because the

Price-Minus-Moving-Average rule overweights more heavily the most recent price changes than

the Moving-Average-Change-of-Direction rule computed using the same weighting scheme.

Therefore the Price-Minus-Moving-Average rule reacts more quickly to the recent trend changes

than the Moving-Average-Change-of-Direction rule.3

2.3.5 Double Crossover Method

The relationship between the Double Crossover Method and the Momentum rule is as follows

(here we use result (8))

Indicator
DCM(s, k)
t = MAt(s)−MAt(k) = (Pt −MAt(k))− (Pt −MAt(s))

=

∑k
j=1w

k
t−jMOMt(j)∑k
j=0w

k
t−j

−
∑s

j=1w
s
t−jMOMt(j)∑s
j=0w

s
t−j

.

3Assume, for example, that the trader uses the simple moving average weighting scheme in both the rules. In
this case our result says that the Price-Minus-Simple-Moving-Average rule is equivalent to the Linear-Moving-
Average-Change-of-Direction rule. As a consequence, it is naturally to expect that the Price-Minus-Simple-
Moving-Average rule reacts more quickly to the recent trend changes than the Simple-Moving-Average-Change-
of-Direction rule.
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Different superscripts in the weights mean that for the same subscript the weights are generally

not equal. For example, in case of either linearly weighted moving averages or reverse expo-

nential moving averages wk
t−j ̸= ws

t−j , yet for the other weighting schemes considered in this

paper wk
t−j = ws

t−j . In order to get a closer insight into the anatomy of the Double Crossover

Method, we assume that one uses the exponential weighting scheme in the computation of

moving averages (as it most often happens in practice). In this case the expression for the

value of the technical indicator in terms of monthly price changes is given by (here we use

results (10) and (15))

Indicator
DCM(s, k)
t =

∑k
j=1 λ

j
∑j

i=1∆Pt−i∑k
j=0 λ

j
−

∑s
j=1 λ

j
∑j

i=1∆Pt−i∑s
j=0 λ

j
=

∑k
i=1

(∑k
j=i λ

j
)
∆Pt−i∑k

j=1 λ
j

−

∑s
i=1

(∑s
j=i λ

j
)
∆Pt−i∑s

j=1 λ
j

=

∑k
i=1

(
λi − λk+1

)
∆Pt−i

1− λk+1
−

∑s
i=1

(
λi − λs+1

)
∆Pt−i

1− λs+1
.

(20)

If we assume in addition that both s and k are relatively large such that λs ≈ 0 and λk ≈ 0,

then we obtain

Indicator
DCM(s, k)
t ≈

k∑
i=1

λi∆Pt−i −
s∑

i=1

λi∆Pt−i =
k∑

i=s+1

λi∆Pt−i.

The expression above can be conveniently re-written as

Indicator
DCM(s, k)
t ≡

∑k
i=s+1 λ

i−s−1∆Pt−i∑k
j=s+1 λ

i−s−1
when k > s, λs ≈ 0, λk ≈ 0.

In words, the computation of the trading signal for the Double Crossover Method based on

the exponentially weighted moving averages of lengths s and k > s, when both s and k are

rather large, is equivalent to the computation of the exponentially weighted moving average

of monthly price changes, ∆Pt−i, for i ∈ [s+ 1, k]. Note that the most recent s monthly price

changes completely disappear in the computation of the technical trading indicator. When

the values of s and k are not rather large, the most recent s monthly price changes do not

disappear in the computation of the technical indicator, yet the weights of these price changes

are reduced as compared to the weight of the subsequent (s+ 1)-th price change.
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The final cautionary note on the use of the Double Crossover Method is as follows. A

trader might be tempted to use different types of weighting schemes in the shorter and longer

moving averages. Yet in this case there is absolutely no guarantee that the weights of the most

recent prices changes remain positive. Negative weights of the most recent price changes in

the computation of the trading signal can lead to “unforeseen” consequences. One potential

consequence in this case is that the time lag between the market action and the generation of

a trading signal may increase substantially. Another possibility is that the trading indicator

starts generating completely inappropriate Buy and Sell signals.

2.3.6 Discussion

Summing up the results presented above, we reveal that all technical trading indicators con-

sidered in this paper are computed in the same general manner. We find, for instance, that

the computation of every technical trading indicator can be interpreted as the computation of

a weighted average of the momentum rules computed using different lookback periods. Thus,

the momentum rule might be considered as an elementary trading rule on the basis of which

one can construct more elaborate rules. The most insightful conclusion emerging from our

analysis is that the computation of every technical trading indicator can also be interpreted as

the computation of the weighted moving average of monthly price changes over the lookback

period. This allows us, for example, to establish a one-to-one equivalence between a price-

minus-moving-average rule and a corresponding moving-average-change-of-direction rule.

Our main conclusion is that, despite being computed seemingly different at the first sight,

the only real difference between miscellaneous rules lies in the weighting scheme used to

compute the moving average of monthly price changes. Figure 1 illustrates clearly distinc-

tive weighting schemes for the computations of technical trading indicators based on mov-

ing averages. In particular, this figure illustrates the weighting schemes for the Momen-

tum rule, the Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8), the

Price-Minus-Simple-Moving-Average rule, the Price-Minus-Linear-Moving-Average rule, the

Reverse-Exponential-Moving-Average-Change-of-Direction rule (with λ = 0.9), and the Dou-

ble Crossover Method (based on using two exponential moving averages with λ = 0.8). For

all technical indicators we use k = 10 which means that to compute the value of a techni-

cal indicator we use the most recent price change, ∆Pt−1, denoted as Lag0, and 9 preceding
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Figure 1: Weights of monthly price changes used for the computations of the technical
trading indicators with k = 10. MOM denotes the Momentum rule. P-REMA denotes
the Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA de-
notes the Price-Minus-Simple-Moving-Average rule. P-LMA denotes the Price-Minus-Linear-
Moving-Average rule. ∆REMA denotes the Reverse-Exponential-Moving-Average-Change-
of-Direction rule (with λ = 0.9). DCM denotes the Double Crossover Method (based on using
two exponential moving averages with λ = 0.8 and s = 3). Lag(i − 1) denotes the weight of
the lag ∆Pt−i, where Lag0 denotes the most recent price change ∆Pt−1 and Lag9 denotes the
most oldest price change ∆Pt−10.

lagged price changes up to lag ∆Pt−10, denoted as Lag9. In addition, in the computation of

the technical indicator for the Double Crossover Method we use s = 3.

Apparently, the Momentum rule assigns equal weights to all monthly price changes in the

lookback period. The next three rules overweight the most recent price changes. They are

arranged according to increasing degree of overweighting. Whereas the Price-Minus-Simple-

Moving-Average rule employs the linear weighting scheme, the degree of overweighting in the

Price-Minus-Reverse-Exponential-Moving-Average rule can be gradually varied from the equal

weighting scheme (when λ = 0) to the linear weighting scheme (when λ = 1), see property (2).

Formally this can be expressed by

lim
λ→0

Indicator
P-REMA(k)
t = Indicator

MOM(k)
t , lim

λ→1
Indicator

P-REMA(k)
t = Indicator

P-SMA(k)
t .

Comparing to the Price-Minus-Simple-Moving-Average rule, a higher degree of overweigh-

ing can be attained by using the Price-Minus-Exponential-Moving-Average rule. When λ ≈
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0.85 the degree of overweighing the most recent price changes in the Price-Minus-Exponential-

Moving-Average rule is virtually the same as in the Price-Minus-Linear-Moving-Average rule.

Therefore, we demonstrate only the weighing scheme in the Price-Minus-Linear-Moving-Average

rule. In contrast to the previous rules, the Reverse-Exponential-Moving-Average-Change-of-

Direction rule underweights the most recent price changes. Finally, the weighting scheme in the

Double Crossover Method underweights both the most recent and the most old price changes.

In this weighing scheme the price change ∆Pt−s−1 = ∆Pt−4 has the largest weight in the

computation of moving average.

Our alternative representation of the computation of technical trading indicators by means

of the moving average of price changes, together with the graphical visualization of the weight-

ing schemes for different rules presented in Figure 1, reveals a couple of paradoxes. The first

paradox consists in the following. Many analysts argue that the most recent stock prices con-

tain more relevant information on the future direction of the stock price than earlier stock

prices. Therefore, one should better use the LMA(k) instead of the SMA(k) in the compu-

tation of trading signals. Yet in terms of the monthly price changes the application of the

Price-Minus-Simple-Moving-Average rule already leads to overweighting the most recent price

changes. If it is the most recent stock price changes (but not prices) that contain more relevant

information on the future direction of the stock price, then the use of the Price-Minus-Linear-

Moving-Average rule leads to a severe overweighting the most recent price changes, which

might be suboptimal.

The other paradox is related to the effect produced by the use of a shorter moving average

in the computation of a trading signal for the Double Crossover Method. Specifically, our al-

ternative representation of the computation of technical trading indicators reveals an apparent

conflict of goals that some analysts want to pursue. In particular, on the one hand, one wants

to put more weight on the most recent prices that are supposed to be more relevant. On the

other hand, one wants to smooth the noise by using a shorter moving average instead of the

last closing price (as in the Price-Minus-Moving-Average rule). It turns out that these two

goals cannot be attained simultaneously because the noise smoothing results in a substantial

reduction of weights assigned to the most recent price changes (and, therefore, most recent

prices). Figure 1 clearly demonstrates that the weighting scheme for the Double Crossover

Method has a hump-shaped form such that the largest weight is given to the monthly price
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change at lag s. Then, as the lag number decreases to 0 or increases to k − 1, the weight of

the lag decreases. Consequently, the use of the Double Crossover Method can be justified only

when the price change at lag s contains the most relevant information on the future direction

of the stock price.

3 Historical Performance of Trading Rules

3.1 Data

In our empirical study we use the capital appreciation and total return on the Standard and

Poor’s Composite stock price index, as well as the risk-free rate of return proxied by the

Treasury Bill rate. Our sample period begins in January 1860 and ends in December 2009

(150 full years), giving a total of 1800 monthly observations. The data on the S&P Composite

index comes from two sources. The returns for the period January 1860 to December 1925 are

provided by William Schwert.4 The returns for the period January 1926 to December 2009

are computed from the closing monthly priced of the S&P Composite index and corresponding

dividend data provided by Amit Goyal.5 The Treasury Bill rate for the period January 1920

to December 2009 is also provided by Amit Goyal. Because there was no risk-free short-term

debt prior to the 1920s, we estimate it in the same manner as in Welch and Goyal (2008) using

the monthly data for the Commercial Paper Rates for New York. These data are available for

the period January 1857 to December 1971 from the National Bureau of Economic Research

(NBER) Macrohistory database.6 First, we run a regression

Treasury-bill ratet = α+ β × Commercial Paper Ratet + et

over the period from January 1920 to December 1971. The estimated regression coefficients

are α = −0.00039 and β = 0.9156; the goodness of fit, as measured by the regression R-square,

amounts to 95.7%. Then the values of the Treasury Bill rate over the period January 1860 to

December 1919 are obtained using the regression above with the estimated coefficients for the

period 1920 to 1971.

4http://schwert.ssb.rochester.edu/data.htm
5http://www.hec.unil.ch/agoyal/
6http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR
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CAP MKT RF

Mean 6.03 10.46 3.91
St. dev. 17.39 17.40 0.73
Skewness 0.18 0.23 0.93
Kurtosis 8.15 8.38 2.26
Shapiro-Wilk 0.93 0.93 0.94

(0.00) (0.00) (0.00)
AC1 0.08 0.08 0.98

(0.00) (0.00) (0.00)

Table 1: Descriptive statistics of data used in the study. CAP, MKT, and RF denote the
capital appreciation return, the total market return, and the risk-free rate of return respec-
tively. Means and standard deviation are annualized and reported in percents. Shapiro-Wilk
denotes the value of the test statistics in the Shapiro-Wilk normality test. The p-values of the
normality test are reported in brackets below the test statistics. AC1 denotes the first-order
autocorrelation. For each AC1 we test the hypothesis H0 : AC1 = 0. The p-values are reported
in brackets below the values of autocorrelation. Bold text indicates values that are statistically
significant at the 5% level.

Table 1 summarizes the descriptive statistics for the data used in our study. The results of

the Shapiro-Wilk test reject the normality in all data series. In addition, all data series exhibit

a statistically significant positive autocorrelation.

3.2 Technical Trading Rules

The goal of this section is to measure and compare the out-of-sample performance of six clearly

distinct market timing rules based on moving averages. The weighting schemes for these rules

are presented in Figure 1 and include the Momentum rule, Price-Minus-Reverse-Exponential-

Moving-Average rule, Price-Minus-Simple-Moving-Average rule, Price-Minus-Linear-Moving-

Average rule, Reverse-Exponential-Moving-Average-Change-of-Direction rule, and the Double

Crossover Method. In order to compute the value of the trading indicator for the first, third,

and forth rule, we need to specify the length of the lookback period k. The value of k is de-

termined dynamically by the out-of-sample simulation procedure that will be described below.

The equivalent representations for the computation of the value of the trading indicators for

these rules

Indicator
MOM(k)
t = Pt − Pt−k ≡ 1

k

k−1∑
i=0

∆Pt−i ≡ SMAt(k − 1)− SMAt−1(k − 1).
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Indicator
P-SMA(k)
t = Pt − SMAt(k) ≡

∑k−1
i=0 (k − i)∆Pt−i∑k−1

i=0 (k − i)
≡ LMAt(k − 1)− LMAt−1(k − 1).

Indicator
P-LMA(k)
t = Pt − LMAt(k) ≡

∑k−1
i=0

(k−i)(k−i+1)
2 ∆Pt−i∑k−1

i=0
(k−i)(k−i+1)

2

.

The value of the technical indicator for the second and fifth rule depends on the length of the

lookback period k and the value of the decay factor λ which determines the degree of over-

weighting (or under-weighting) the most recent prices. In order to avoid over-optimization in

out-of-sample testing, we perform the optimization with respect to k only; the value of λ is held

constant through time. In the Price-Minus-Reverse-Exponential-Moving-Average rule we use

λ = 0.8 which provides the degree of overweighing the most recent price changes somewhere in

between the degrees provided by the equally weighted and linearly weighted schemes. In the

Reverse-Exponential-Moving-Average-Change-of-Direction rule we use λ = 0.9 which provides

a moderate degree of underweighting the most recent price changes. The computation of the

value of the trading indicators for these two rules

Indicator
P-REMA(k)
t = Pt −REMAt(k) ≡

∑k−1
i=0

(
1− λk−i

)
∆Pt−i∑k−1

i=0 (1− λk−i)
for λ = 0.8.

Indicator
∆REMA(k)
t = REMAt(k)−REMAt−1(k) ≡

∑k
i=0 λ

k−i∆Pt−i∑k
i=0 λ

k−i
for λ = 0.9.

The value of the technical indicator for the Double Crossover Method depends on the choice

of the weighing schemes in two moving averages and the lengths of shorter and longer aver-

ages. Since most often analysts use two exponentially weighted moving averages in the Double

Crossover Method, we also decide in favour of using two exponentially weighted moving av-

erages with λ = 0.8. Among analysts, one of the most popular combination is to use 50-day

and 200-day averages in this timing rule. Therefore we fix the length of the shorter average

to be s = 2, whereas the length of the longer average k > 2 is determined by the dynamic

optimization procedure. Consequently, in our tests the computation of the value of the trading

indicator for the Double Crossover Method goes according to

Indicator
DCM(2,k)
t = EMAt(2)− EMAt(k) for λ = 0.8 and k > 2.
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3.3 Transaction Costs

In order to assess the real-life performance of a market timing rule, we need to account for the

fact that rebalancing an active portfolio incurs transaction costs. Transaction costs in capital

markets consist of the following three primary components: half-size of the quoted bid-ask

spread, brokerage fees (commissions), and market impact costs. In addition, there are various

taxes, delay costs, opportunity costs, etc. (see, for example, Freyre-Sanders, Guobuzaite, and

Byrne (2004)). In our study we consider the average bid-ask half-spread as the only determinant

of the one-way transaction costs, and we neglect all other components of transaction costs.

Berkowitz, Logue, and Noser (1988), Chan and Lakonishok (1993), and Knez and Ready

(1996) estimate the average one-way transaction costs for institutional investors to be in the

range of 0.23% to 0.25%. Therefore in our study, we assume that the one-way transaction

costs in the stock market amount to 0.25%. Denoting by γ the one-way transaction costs, the

return to the market timing strategy over month t is given by

rt =



rMt if (δt|t−1 = Buy) and δt−1|t−2 = Buy),

rMt − γ if (δt|t−1 = Buy) and (δt−1|t−2 = Sell),

rft if (δt|t−1 = Sell) and (δt−1|t−2 = Sell),

rft − γ if (δt|t−1 = Sell) and (δt−1|t−2 = Buy).

(21)

3.4 Methodology for Out-of-Sample Testing of Trading Rules

To simulate the returns to the market timing strategy that are given by (21), for each market

timing rule we need to compute the value of the technical indicator which provides us with

Buy and Sell signals. It is crucial to observe that in order to compute the value of the technical

indicator we need to specify the length of the lookback period k. One approach to the choice of

k is to use the full historical data sample, simulate the returns to the market timing strategy for

different k, and pick up the value of k which produces the best performance. Yet this approach

is termed as “data-mining” and the performance of the best trading rule in a back test (that

is, in-sample performance) generally severely over-estimates the real-life performance.

It is widely believed that the out-of-sample performance of a trading strategy provides

a much more reliable estimate of it’s real-life performance as compared with the in-sample
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performance (see Sullivan et al. (1999), White (2000), and Aronson (2006)). The out-of-sample

performance measurement method is based on simulating the real-life trading where a trader

has to make a choice of what length of the lookback period k to use given the information

about the past performances of the market timing strategy for different values of k. Specifically,

the out-of-sample testing procedure begins with splitting the full historical data sample [1, T ]

into the initial in-sample subset [1, p] and out-of-sample subset [p + 1, T ], where T is the last

observation in the full sample and p denotes the splitting point. Then the best rule discovered

in the mined data (in-sample) is evaluated on the out-of-sample data.

The out-of-sample performance can be evaluated with either a rolling- or expanding-window

estimation scheme. A common belief among traders is that, regardless of the choice of his-

torical period, the same specific value of k is optimal for using in a given technical indicator.

For example, the majority of traders believe that in the Price-Minus-Simple-Moving-Average

trading rule the optimal value of k equals to 10. If the length of the optimal lookback period

is constant through time, then it is natural to use the expanding-window estimation scheme

to determine the value of k. Out-of-sample simulation of a market timing strategy using an

expanding-window estimation of k is performed as follows. The in-sample period of [1, t],

t ∈ [p, T − 1], is used to complete the procedure of selecting the best trading rule given some

optimization criterion O(r1, r2, . . . , rt) defined over the returns to the market timing strategy

up to month t.7 Formally, in our study the choice of the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

O(r1, r2, . . . , rt),

where kmin and kmax are the minimum and maximum values for k. Subsequently, the trading

signal for month t+1 is determined using the lookback period of length k∗t . Then the in-sample

period is expanded by one month, and the best trading rule selection procedure is performed

once again using the new in-sample period of [1, t+1] to determine the trading signal for month

t + 2. This procedure is repeated, by pushing the endpoint of the in-sample period ahead by

one month with each iteration of this process, until the trading signal for the last month T is

determined.

7We follow closely the methodology employed by Lukac, Brorsen, and Irwin (1988), Lukac and Brorsen
(1990), and Zakamulin (2014) among others. Note that this methodology has a dynamic aspect, in which the
trading rule is being modified over time as the market evolves.
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The rolling-window estimation scheme is used when parameter instability is suspected.

That is, when the length of the optimal lookback period varies through time. In the rolling-

window estimation scheme the choice of k is done using the most recent n observations. In

this case the choice of the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

O(rt−n+1, rt−n+2, . . . , rt).

We set the value of kmin to be the minimum possible length (measured in the number

of lagged prices) of the lookback period for a given trading rule. For the Double Crossover

Method kmin = 3, for all other rules kmin = 1. To select the appropriate value for kmax, we

studied the most popular recommendations of technical analysts for the choice of the optimal

lookback period. In practice, the recommended value for the length k virtually never exceeds

12 months. To be on the safe side, in our empirical study we set kmax = 24.

3.5 Choice of performance measure

There is a big uncertainty about what optimization criterion to use in the determination of the

best trading rule using the past data. To limit the choice of optimization criteria, we consider

an investor who decides whether to follow the passive buy-and-hold strategy or to follow the

active market timing strategy. Since the two strategies are supposed to be mutually exclusive, it

is natural to employ a reward-to-total-risk performance measure as the optimization criterion.

That is, our investor chooses the value of k which maximizes some portfolio performance

measure in a back test, that is, using the past (in-sample) data.

The most widely recognized reward-to-risk measure is the Sharpe ratio. Thus, the Sharpe

ratio represents the natural optimization criterion to find the best trading rule. The Sharpe

ratio uses the mean excess returns as a measure of reward, and the standard deviation of excess

returns as a measure of risk. Specifically, the Sharpe ratio of trading strategy i with excess

returns reit = rit − rft is computed as (according to Sharpe (1994))

SRi =
µ(rei )

σ(rei )
,

where µ(rei ) and σ(rei ) denote the mean and standard deviation of reit respectively.
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For the Sharpe ratio of each market timing strategy we report the p-value of testing the null

hypothesis that it is equal to the Sharpe ratio of the market portfolio (denoted by SRM ). For

this purpose we apply the Jobson and Korkie (1981) test with the Memmel (2003) correction.

Specifically, given SRi, SRM , and ρ as the estimated Sharpe ratios and correlation coefficient

over a sample of size T , the test of the null hypothesis: H0 : SRi − SRM = 0 is obtained via

the test statistic

z =
SRi − SRM√

1
T

[
2(1− ρ2) + 1

2(SR
2
i + SR2

M − 2ρ2SRiSRM )
] ,

which is asymptotically distributed as a standard normal.

As with any reward-to-risk ratio, the use of the Sharpe ratio has some inconveniences.

In particular, its value is difficult to interpret, and to decide whether the timing strategy

outperforms the market, one also needs to compute the Sharpe ratio of the market portfolio

and compare one to the other. To facilitate performance measurement with the Sharpe ratio,

we closely follow the method presented by Modigliani and Modigliani (1997) and employ the

M2 measure (Modigliani-Modigliani measure or Modigliani-squared measure). The idea is to

mix the active portfolio with a position in the risk-free asset so that the complete portfolio has

the same risk as the passive market. The returns to the complete portfolio are

r∗it = a(rit − rft) + rft,

where a is the proportion invested in the active portfolio. When a > 1 (a < 1), it means that

the complete portfolio represents a levered (unlevered) version of the original portfolio. The

value of a that equates the risk of the complete portfolio with the risk of the market portfolio

is

a =
σ(reM )

σ(rei )
.

In a similar manner to Bodie, Kane, and Marcus (2007), we compute the M2 measure as the

difference between the return to the complete portfolio and the return to the market portfolio.

As the result, the expression for M2 measure is given by

M2
i = µ(r∗ei )− µ(reM ) = (SRi − SRM )σ(reM ).
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Note that this M2 measure produces the same ranking of risky portfolios as the Sharpe ra-

tio, but it has the significant advantage of being in units of percent return, which makes it

dramatically more intuitive to interpret. Specifically, this measure tells us by how much, in

basis points, portfolio i outperformed (if M2
i > 0) or underperformed (if M2

i < 0) the market

portfolio on a risk-adjusted basis.

Because the Sharpe ratio is often criticized on the grounds that the standard deviation

appears to be an inadequate measure of risk, as a robustness test, we also used the Sortino

ratio (due to Sortino and Price (1994)) and a few other popular reward-to-risk ratios as the

optimization criterion instead of the Sharpe ratio. The results of these tests showed that

regardless of the reward-to-risk ratio used, the comparative performance of the active market

timing strategy and the passive market strategy remains virtually the same.

3.6 Time-Variations in the Length of the Optimal Lookback Period

As it was mentioned earlier, in the literature on market timing one usually supposes that there

is some specific length of the lookback period, k, which is optimal for using in a given technical

indicator. Yet there is a big controversy among technical analysts about the optimal value of

k. For instance, for the Price-Minus-Simple-Moving-Average rule the recommended value of

k varies from 50 to 200 days (see Brock et al. (1992), Sullivan et al. (1999), and Okunev and

White (2003)). This common belief, that the optimal lookback period is constant, justifies the

use of the expanding-window estimation scheme in the out-of-sample simulation of the trading

strategy. And that is why the rolling-window estimation scheme is practically never used. The

goal of this section is to check whether this common belief is fallacious or not.

In order to find out how stable the length of the optimal lookback period is for each

trading rule, we use a rolling window of n months. For each specific window [t, t + n], for

t ∈ [1, T − n], we find the value of k which maximizes the in-sample performance of a trading

rule. Specifically, the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

SR(rt, rt+1, . . . , rt+n),

where SR(·) is the Sharpe ratio computed using the returns rt, rt+1, . . . , rt+n to a trading

strategy under investigation. Then we report the descriptive statistics of k∗t for each trading
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Figure 2: The optimal lookback period, measured in months, for different technical trading
rules over a rolling window of 20 years. The first reported value for the optimal lookback pe-
riod in the graphs is for the period from January 1860 to December 1879. MOM denotes the
Momentum rule. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. P-
LMA denotes the Price-Minus-Linear-Moving-Average rule. ∆REMA denotes the Reverse-
Exponential-Moving-Average-Change-of-Direction rule (with λ = 0.9). DCM denotes the
Double Crossover Method (based on using two exponential moving averages with λ = 0.8).

rule used in our empirical study.

We need to choose a suitable period length, n, that covers a series of alternating bull and
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MOM P-REMA P-SMA P-LMA ∆REMA DCM

Mean 7.0 8.6 10.4 13.0 6.5 10.0
Median 5 9 11 14 8 11
Std. Deviation 3.9 4.3 5.6 7.1 3.4 5.4
Minimum 1 1 1 1 2 3
Maximum 15 19 23 23 11 22

Table 2: Descriptive statistics of the optimal lookback period (the number of lagged monthly
prices) for different technical trading rules over a rolling window of 20 years. MOM denotes the
Momentum rule. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. P-
LMA denotes the Price-Minus-Linear-Moving-Average rule. ∆REMA denotes the Reverse-
Exponential-Moving-Average-Change-of-Direction rule (with λ = 0.9). DCM denotes the
Double Crossover Method (based on using two exponential moving averages with λ = 0.8).

bear markets. Our choice is n = 240 (20 years) and is motivated by the results reported

by Lunde and Timmermann (2003). In particular, these authors studied the durations of

bull and bear markets using virtually the same dataset as ours. The bull and bear markets

are determined as a filter rule θ1/θ2 where θ1 is a percentage defining the threshold of the

movements in stock prices that trigger a switch from a bear to a bull market, and θ2 is the

percentage for shifts from a bull to a bear market. Using a 15/15 filter rule, Lunde and

Timmermann find that the mean durations of the bull and bear markets are 24.5 and 7.7

months respectively, with the longest bull and bear market durations of about 10 and 2 years

respectively. Therefore with the lookback period of 20 years we are guaranteed to cover several

alternating bull and bear markets.

The results of our investigation are visualized in Figure 2 and the descriptive statistics of the

optimal lookback period (which is the number of lagged monthly prices) for different technical

trading rules are reported in Table 2. Specifically, Table 2 reports the descriptive statistics of

the optimal lookbacks for our total historical sample from January 1860 to December 2009.

This sample sample covers the period of 150 years (1800 months) and, with a 20-year window,

includes 1561 different values for the optimal k∗t , where the first value is for the period from

January 1860 to December 1879, the second value is for the period from February 1860 to

January 1880, etc.

Apparently, the results suggest that for each technical trading rule there is no single optimal

lookback period. On the contrary, the results indicate that there are substantial time-variations
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in the length of the optimal lookback period. For example, for the most popular Price-Minus-

Simple-Moving-Average rule the optimal lookback period varies from 1 to 23 months. Nev-

ertheless, over the total historical sample, the mean value of the optimal lookback period for

this rule amounts to 10.4 months which is very close to the most often recommended value

of 10 months (200 days). In contrast, in our study the mean value of the optimal lookback

period for the Momentum rule is 7.0 months which is substantially lower than the most often

recommended value of 12 months (see Moskowitz et al. (2012)).

The results reported in this section have two important implications. First of all, these

results challenge the common belief on the constancy of the length of the optimal lookback

period. As an immediate consequence, these results advocate that the trading strategy, simu-

lated with the rolling-window estimation of the optimal lookback period, might produce better

performance than that with the expanding-window estimation. Secondly, these results propose

a simple explanation for the existing big diversity of the popular recommendations concerning

the choice of the optimal value for k. Specifically, different recommendations for the value of k

appear as the results of finding the best trading rule in the back-test using different historical

periods.

3.7 Empirical Results of Performance Measurement

Despite many advantages of the out-of-sample performance measurement method, it has one

unresolved deficiency that may seriously corrupt the estimation of the real-life performance of

a market timing strategy. The primary concern is that no guidance exists on how to choose

the split point between the in-sample and out-of-sample subsets. One possible approach is to

choose the initial in-sample segment with a minimum length and use the remaining part of

the sample for the out-of-sample test (see Marcellino, Stock, and Watson (2006) and Pesaran,

Pick, and Timmermann (2011)). Another potential approach is to do the opposite and reserve

a small fraction of the sample for the out-of-sample period (as in Sullivan et al. (1999)).

Alternatively, the split point can be selected to lie somewhere in the middle of the sample.

In any case, according to conventional wisdom, the out-of-sample performance of a trading

strategy provides an unbiased estimate of its real-life performance.

Yet recently, the conventional wisdom about the unbiased nature of traditional out-of-

sample testing has been challenged. In the context of out-of-sample forecast evaluation, Rossi
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and Inoue (2012) and Hansen and Timmermann (2013) report that the results of out-of-sample

forecast tests depend significantly on how the sample split point is determined. Zakamulin

(2014) also demonstrates that the out-of-sample performance of market timing strategies de-

pends critically on the choice of a split point. The primary reason why the choice of split point

sometimes dramatically affects the out-of-sample performance of the market timing strategy

lies in the fact that the performance of market timing strategies is highly non-uniform. Gen-

erally, a market timing strategy under-performs the passive strategy during bull markets and

shows a superior performance during severe bear markets. According to Lunde and Timmer-

mann (2003), the mean bull market duration exceeds the mean bear market duration by a

factor of 1.5-2.3, depending on the filter size in the bull-bear detection algorithm. As a result,

one has to expect that, over short-term horizons, most of the time a market timing strategy

under-performs the market to some extent, but occasionally it delivers an extraordinary out-

performance. In addition, a bull market might last over the course of a decade (again, this

number depends on the filter size). Therefore, as argued in Zakamulin (2014), in the out-of-

sample testing one has to choose the initial in-sample segment to have a minimum length.

Otherwise, as in the tests performed by Sullivan et al. (1999), the whole out-of-sample period

may be qualified as a bull market which leads to an erroneous conclusion that market timing

does not work at all.

Motivated by the discussion above, we choose the length of the initial in-sample period

to be 10 years. Specifically, in our tests the initial in-sample period is from January 1860 to

December 1869. Consequently, our out-of-sample period is from January 1870 to December

2009 which spans 140 years. We perform the simulation of the returns to six market timing

rules using both expanding- and rolling-window estimation schemes to determine the lookback

period length. In the latter case the length of the rolling window is of 10 years. However, it is

worth noting that, in principle, the performance of the market timing rule implemented with a

rolling-window estimation scheme depends on the length of the rolling window. As a matter of

fact, we tested different lengths of the rolling window (in the interval n ∈ [2, 20] years) and our

experiments showed that the performance of a market timing strategy varies insignificantly as

long as the length of the rolling window exceeds 5 years. That is, our experiments indicated that

decreasing the length of a rolling window to a period shorter than 5 years usually substantially

deteriorates the performance of a market timing strategy.
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We begin presenting the results of simulations and performance measurement using the

traditional method. Table 3 reports the descriptive statistics and performances of the active

trading rules and the passive market portfolio as well. Specifically, this table reports the means,

standard deviations, skewness, and minimum and maximum of monthly returns. In addition,

this table reports the Sharpe ratio of each strategy. For each market timing strategy we test

the hypothesis that its Sharpe ratio is equal to the Sharpe ratio of the passive market strategy.

Our first observation is that, judging by the Sharpe ratios, practically every market timing

strategy outperforms the passive market strategy on the risk-adjusted basis. Only the per-

formance of the market timing strategy based on the Reverse-Exponential-Moving-Average-

Change-of-Direction rule, implemented using the expanding-window estimation scheme, is

worse than that of the passive strategy. Yet only two trading strategies exhibit perfor-

mances that are statistically significantly different from the passive market performance. These

strategies are based on the Momentum rule and the Price-Minus-Reverse-Exponential-Moving-

Average rule, and both of the strategies are simulated using the rolling-window estimation

scheme.

Our second observation is that, contrary to the common belief, neither over-weighting

nor under-weighting the recent price changes improves the performance of a market timing

strategy based on moving averages. We find that the Momentum rule, where the price changes

are equally weighted, produces the best performance in the out-of-sample tests. An instructive

way of paraphrasing this result is to say “the simplest solution is often the best solution”.

Our third observation is that we find indications that the use of the rolling-window es-

timation scheme, to determine the length of the optimal lookback period, produces better

performance than the use of the expanding-window estimation scheme. This is valid for 4 out

of 6 trading rules used in our study. As a matter of fact, this finding is not surprising given

the fact that there is no single optimal lookback period for a trading rule. Yet the difference

between performances produced by the rolling- and expanding-window estimation schemes are

not substantial.

Our forth observation is about the descriptive statistics of the returns to market timing

strategies. All market timing strategies are virtually equally risky, the standard deviation

of monthly returns varies between 3.2% and 3.5%. We observe a significant risk reduction

compared to the riskiness of the passive market portfolio. However, the reduction of risk is not
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surprising because virtually in any market timing strategy about 1/3 of the time the money are

held in cash. The mean returns to a market timing strategy are also below the mean returns

to the market portfolio. Yet for the majority of timing rules the decrease in mean returns

is lesser than the decrease in risk which improves the risk-adjusted performance of a market

timing strategy. We also observe that whereas the returns to the market portfolio are positively

skewed, the returns to the majority of market timing strategies are negatively skewed. This

suggests that, while the passive strategy has a higher variation on gains, the market timing

strategy typically has a higher variation on losses. The comparison of the maximum and

minimum monthly returns to the market portfolio and those to the market timing strategies

allows us to explain the reason for negative skewness. Note that the majority of the market

timing rules lets the “big downward mover” months pass through, but misses the “big upward

mover” months.

Now we turn to the alternative presentation of the performance of the market timing

strategies. This alternative presentation is suggested by Zakamulin (2014) and motivated

as follows. Zakamulin (2014) agues that the traditional performance measurement using a

single number (for example, the value of a Sharpe ratio) estimated over very long out-of-

sample period (which is beyond the investment horizon of most individual investors) is very

misleading for investors with short- and intermediate-term investment horizons. This is because

a single number for performance creates a wrong impression that performance is time-invariant,

whereas in reality it varies dramatically over time. Thus, it is impossible to provide an accurate

picture of market timing performance without taking into account the time-varying nature of

performance. With this fact in mind, instead of providing a single number for the performance

of a market timing strategy over a very long historical period, we measure the performance

over shorter N -year disjoint periods, and then provide the descriptive statistics of the historical

performance over these N -year periods.

Because our primer interest is to find out whether a market timing strategy can beat

the market, we always need to compare the performance of a market timing strategy with

that of the market. To simplify the performance comparison in this case, we employ the

Modigliani-Modigliani measure. To illustrate the fact that the market timing performance is

very uneven over time, Figure 3 plots the annualized M2 performance measure computed over

disjoint intervals of 5 years. The first period is from January 1870 to December 1874, the
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second period is from January 1875 to December 1879, etc. Then we plot the value of M2

measure versus the historical period. The plots in this figure clearly indicate that the superior

performance of market timing was generated mainly over relatively few particular historical

episodes. Specifically, they are the severe bear markets of the decades of 1870s, 1900s, 1930s,

1970s, and finally 2000s. Many market timing rules consistently under-performed the market

over the course of several decades. For example, the most popular Price-Minus-Simple-Moving-

Average rule under-performed the market over the period from early 1930s to late 1960s, and

then over the period from late 1970s to the beginning of 2000s.

The alternative presentation of the performance of the market timing rules is reported

in Table 4. In particular, this table reports the descriptive statistics of the annualized M2

performance measure over medium- to long-term investment horizons of 5 and 10 years. First

of all, the table reports the mean value of M2, which reflects the average performance of a

market timing strategy over an N -year horizon. In addition to the mean, the table reports the

standard deviation, which reflects the variability of M2, as well as the minimum and maximum

values, which define the range of possible values for M2. The table also reports the quartiles

of distribution of M2. These quartiles are supposed to help investors to roughly estimate the

frequency distribution of the performance of a market timing strategy. We remind the reader

that quartiles are the three points that divide a ranked set of data values into four equal parts.

The first quartile is the number below which lies the bottom 25% of data. Presumably, the

probability that the performance of a market timing strategy over an N -year horizon will be

below the first quartile equals 25%. The second quartile (the median) divides the range in

the middle and has 50% of the data below it. Thus, the probability that the performance

of a market timing strategy over an N -year horizon will be below the median equals 50%.

The third quartile has 75% of the data below it and the top 25% of the data above it. In

addition, this table reports the probability that a market timing strategy outperforms the

passive strategy over an N -year investment horizon. Finally, the table reports two conditional

mean performances: the mean out-performance, E[M2|M2 > 0], which is the mean value of

M2 conditional on M2 > 0, and the mean under-performance, E[M2|M2 < 0], which is the

mean value of M2 conditional on M2 < 0.

First, we interpret the descriptive statistics for the performance of market timing strategies

over a 5-year horizon. Over this horizon, 4 out of 6 timing strategies exhibit a positive mean
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Figure 3: Annualized M2 performance measure computed over disjoint intervals of 5-years.
For each trading rule and estimation scheme we simulate real-life technical trading and com-
pute the out-of-sample performance of market timing strategies over 5-year periods. The first
period is from January 1870 to December 1874, the second period is from January 1875 to
December 1879, etc. Then we plot the value of M2 measure versus the historical period. The
values of M2 are reported in percents. MOM denotes the Momentum rule. P-REMA de-
notes the Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA de-
notes the Price-Minus-Simple-Moving-Average rule. P-LMA denotes the Price-Minus-Linear-
Moving-Average rule. ∆REMA denotes the Reverse-Exponential-Moving-Average-Change-
of-Direction rule (with λ = 0.9). DCM denotes the Double Crossover Method (based on using
two exponential moving averages with λ = 0.8).
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value for M2. That is, the majority of market timing rules outperform the market on average.

Yet only the Momentum rule has a positive median value for M2. In words, this means that

only the Momentum rule outperforms the market more than 50% of time over a 5-year horizon.

For all other trading rules the probability of outperformance is less than 50%. When the mean

is larger than the median, this means that the probability distribution of M2 is positively

skewed. This implies that on average the out-performance is greater than under-performance.

This is confirmed by the mean conditional performance values. Specifically, for every trading

rule E[M2|M2 > 0] >
∣∣∣E[M2|M2 < 0]

∣∣∣, that is, the mean value of performance, conditional

on the trading rule outperforms the market, is greater than the absolute value for the mean

performance, conditional on the trading rule underperforms the market. The variability of the

performance of the Momentum rule is the largest one. However, this is because the Momentum

rule showed an extraordinary good performance over the period January 1930 to December

1934. As a matter of fact, the value of the performance measure for this period, in statistical

terms, should be considered as an outlier because this value is very distant from the other

values for the performance measure.

The comparison of the descriptive statistics for the performance of market timing strategies

over a 10-year horizon with that over a 5-year horizon reveals that increasing the investment

horizon increases the chances that a market timing strategy outperforms the market on a

risk-adjusted basis. Specifically, in this case for 4 out of 6 market timing strategies the outper-

formance probability is equal or above 50%. And over this horizon, 5 out of 6 timing strategies

exhibit a positive mean value for M2. Yet the ranking of the trading rules, according to their

performance, remains the same regardless of the length of the investment horizon. The best

performance is delivered by the Momentum rule; the second best by the Price-Minus-Reverse-

Exponential-Moving-Average rule; the worst one by the Reverse-Exponential-Moving-Average-

Change-of-Direction rule.

4 Conclusion

In this paper, we presented the methodology to study the computation of trading indicators

in many market timing rules based on moving averages and analyzed the commonalities and

differences between the rules. Our analysis revealed that the computation of every technical
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trading indicator considered in this paper can be equivalently interpreted as the computation

of the weighted moving average of price changes over the lookback period. Despite a variety

of rules that look seemingly different at the first sight, we found that the only real difference

between the rules lies in the weighting scheme used to compute the moving average of price

changes. The most popular trading indicators employ either equal-weighing of price changes,

over-weighting the most recent price changes, or a hump-shaped weighting scheme with under-

weighting both the most recent and most distant price changes. The trading rules basically

vary only by the degree of over- and under-weighting the most recent price changes.

We also performed the longest out-of-sample testing of a few distinct trading rules in order

to find out whether the real-life performance of market timing strategies can support the

existing myths and common beliefs about market timing. The results of this testing are as

follows. First, contrary to the common belief, our results indicated that there is no single

optimal lookback period in each trading rule. Second, we found no support for the common

belief that over-weighting the recent prices allows one to improve the performance of a market

timing rule. Our results suggested that equal weighing of price changes is the most optimal

weighting scheme to use in market timing. Third, we did find support for the claim that one

can beat the market by timing it. Yet the chances for beating the market depend on the length

of the investment horizon. Whereas over very long-term horizons the market timing strategy

is almost sure to outperform the market on a risk-adjusted basis, over more realistic medium-

term horizons the market timing strategy is equally likely to outperform as to underperform.

Yet we found that the average outperformance is greater than the average underperformance.
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